Global Optimisation through Hyper-Heuristics: Unfolding Population-Based Metaheuristics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence analysis-based hyper-heuristics for water distribution network optimisation

Hyper-heuristics operate at the level above traditional (meta-)heuristics that ‘optimise the optimiser’. These algorithms can combine low level heuristics to create bespoke algorithms for particular classes of problems. The low level heuristics can be mutation operators or hill climbing algorithms and can include industry expertise. This paper investigates the use of a new hyperheuristic based ...

متن کامل

Multi-stage hyper-heuristics for optimisation problems

There is a growing interest towards self configuring/tuning automated general-purpose reusable heuristic approaches for combinatorial optimisation, such as, hyper-heuristics. Hyper-heuristics are search methodologies which explore the space of heuristics rather than the solutions to solve a broad range of hard computational problems without requiring any expert intervention. There are two commo...

متن کامل

Hyper-heuristics Can Achieve Optimal Performance for Pseudo-Boolean Optimisation

Selection hyper-heuristics are randomised search methodologies which choose and execute heuristics from a set of low-level heuristics. Recent research for the LeadingOnes benchmark function has shown that the standard Simple Random, Permutation, Random Gradient, Greedy and Reinforcement Learning selection mechanisms show no effects of learning. The idea behind the learning mechanisms is to cont...

متن کامل

Towards Many-Objective Optimisation with Hyper-heuristics: Identifying Good Heuristics with Indicators

The use of hyper-heuristics is increasing in the multi-objective optimisation domain, and the next logical advance in such methods is to use them in the solution of many-objective problems. Such problems comprise four or more objectives and are known to present a significant challenge to standard dominance-based evolutionary algorithms. We incorporate three comparison operators as alternatives ...

متن کامل

Expensive Optimisation: A Metaheuristics Perspective

Stochastic, iterative search methods such as Evolutionary Algorithms (EAs) are proven to be efficient optimizers. However, they require evaluation of the candidate solutions which may be prohibitively expensive in many real world optimization problems. Use of approximate models or surrogates is being explored as a way to reduce the number of such evaluations. In this paper we investigated three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Sciences

سال: 2021

ISSN: 2076-3417

DOI: 10.3390/app11125620