Global Optimisation through Hyper-Heuristics: Unfolding Population-Based Metaheuristics
نویسندگان
چکیده
منابع مشابه
Sequence analysis-based hyper-heuristics for water distribution network optimisation
Hyper-heuristics operate at the level above traditional (meta-)heuristics that ‘optimise the optimiser’. These algorithms can combine low level heuristics to create bespoke algorithms for particular classes of problems. The low level heuristics can be mutation operators or hill climbing algorithms and can include industry expertise. This paper investigates the use of a new hyperheuristic based ...
متن کاملMulti-stage hyper-heuristics for optimisation problems
There is a growing interest towards self configuring/tuning automated general-purpose reusable heuristic approaches for combinatorial optimisation, such as, hyper-heuristics. Hyper-heuristics are search methodologies which explore the space of heuristics rather than the solutions to solve a broad range of hard computational problems without requiring any expert intervention. There are two commo...
متن کاملHyper-heuristics Can Achieve Optimal Performance for Pseudo-Boolean Optimisation
Selection hyper-heuristics are randomised search methodologies which choose and execute heuristics from a set of low-level heuristics. Recent research for the LeadingOnes benchmark function has shown that the standard Simple Random, Permutation, Random Gradient, Greedy and Reinforcement Learning selection mechanisms show no effects of learning. The idea behind the learning mechanisms is to cont...
متن کاملTowards Many-Objective Optimisation with Hyper-heuristics: Identifying Good Heuristics with Indicators
The use of hyper-heuristics is increasing in the multi-objective optimisation domain, and the next logical advance in such methods is to use them in the solution of many-objective problems. Such problems comprise four or more objectives and are known to present a significant challenge to standard dominance-based evolutionary algorithms. We incorporate three comparison operators as alternatives ...
متن کاملExpensive Optimisation: A Metaheuristics Perspective
Stochastic, iterative search methods such as Evolutionary Algorithms (EAs) are proven to be efficient optimizers. However, they require evaluation of the candidate solutions which may be prohibitively expensive in many real world optimization problems. Use of approximate models or surrogates is being explored as a way to reduce the number of such evaluations. In this paper we investigated three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2021
ISSN: 2076-3417
DOI: 10.3390/app11125620